Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 175: 116580, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723513

RESUMEN

Colitis-associated cancer (CAC) in inflammatory bowel diseases exhibits more aggressive behavior than sporadic colorectal cancer; however, the molecular mechanisms remain unclear. No definitive preventative agent against CAC is currently established in the clinical setting. We investigated the molecular mechanisms of CAC in the azoxymethane/dextran sulfate sodium (AOM/DSS) mouse model and assessed the antitumor efficacy of erlotinib, a small molecule inhibitor of the epidermal growth factor receptor (EGFR). Erlotinib premixed with AIN-93 G diet at 70 or 140 parts per million (ppm) inhibited tumor multiplicity significantly by 96%, with ∼60% of the treated mice exhibiting zero polyps at 12 weeks. Bulk RNA-sequencing revealed more than a thousand significant gene alterations in the colons of AOM/DSS-treated mice, with KEGG enrichment analysis highlighting 46 signaling pathways in CAC development. Erlotinib altered several signaling pathways and rescued 40 key genes dysregulated in CAC, including those involved in the Hippo and Wnt signaling. These findings suggest that the clinically-used antitumor agent erlotinib might be repurposed for suppression of CAC, and that further studies are warranted on the crosstalk between dysregulated Wnt and EGFR signaling in the corresponding patient population.

2.
Am J Physiol Regul Integr Comp Physiol ; 325(2): R193-R211, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335014

RESUMEN

Inflammatory bowel disease (IBD), consisting of ulcerative colitis and Crohn's disease, mainly affects the gastrointestinal tract but is also known to have extraintestinal manifestations because of long-standing systemic inflammation. Several national cohort studies have found that IBD is an independent risk factor for the development of cardiovascular disorders. However, the molecular mechanisms by which IBD impairs the cardiovascular system are not fully understood. Although the gut-heart axis is attracting more attention in recent years, our knowledge of the organ-to-organ communication between the gut and the heart remains limited. In patients with IBD, upregulated inflammatory factors, altered microRNAs and lipid profiles, as well as dysbiotic gut microbiota, may induce adverse cardiac remodeling. In addition, patients with IBD have a three- to four times higher risk of developing thrombosis than people without IBD, and it is believed that the increased risk of thrombosis is largely due to increased procoagulant factors, platelet count/activity, and fibrinogen concentration, in addition to decreased anticoagulant factors. The predisposing factors for atherosclerosis are present in IBD and the possible mechanisms may involve oxidative stress system, overexpression of matrix metalloproteinases, and changes in vascular smooth muscle phenotype. This review focuses mainly on 1) the prevalence of cardiovascular diseases associated with IBD, 2) the potential pathogenic mechanisms of cardiovascular diseases in patients with IBD, and 3) adverse effects of IBD drugs on the cardiovascular system. Also, we introduce here a new paradigm for the gut-heart axis that includes exosomal microRNA and the gut microbiota as a cause for cardiac remodeling and fibrosis.


Asunto(s)
Enfermedades Cardiovasculares , Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Cardiovasculares/complicaciones , Remodelación Ventricular , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/patología , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/patología
3.
Oncotarget ; 14: 377-381, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37185128

RESUMEN

Stromal myo-/fibroblasts (MFs) account for up to 30% of lamina propria cells in the normal human colon and their number is dramatically increased in colon cancer (CRC). Fibroblasts from cancers, also known as cancer-associated fibroblasts (CAFs), differ from normal colonic MF (N-MFs) and support tumor-promoting inflammation, in part due to increased IL-6 secretion. In this editorial, we highlight recent data obtained regarding IL-6 regulation in colorectal cancer CAFs through vitamin A (retinol) metabolism, discuss current limitations in our understanding of the mechanisms leading to the CAF pro-inflammatory phenotype, and discuss potential approaches to target CAF retinoid metabolism during CRC treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Vitamina A/metabolismo , Interleucina-6/metabolismo , Fibroblastos/metabolismo , Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral/genética
4.
Br J Cancer ; 128(4): 537-548, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482184

RESUMEN

BACKGROUND: Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS: Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS: Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION: Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , Interleucina-6 , Humanos , Alcohol Deshidrogenasa , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias del Colon/patología , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/metabolismo , Tretinoina , Vitamina A/metabolismo
5.
Front Immunol ; 13: 1020902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275703

RESUMEN

Background: Previous studies implicated matrix metalloproteinases (MMPs), such as MMP-7, in inflammatory bowel diseases (IBD) by showing increased activity during inflammation of the gut. However, the pathophysiological roles of MMP-7 have not been clearly elucidated. Methods: The expression of MMP-7 was assessed in colonic biopsies of patients with ulcerative colitis (UC), in rodents with experimental colitis, and in cell-based assays with cytokines. Wild-type and MMP-7-null mice treated with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid were used for determining the pro-inflammatory function(s) of MMP-7 in vivo. Results: MMP-7 was highly expressed in patients with UC and in rodents with experimental colitis. IL-1ß, IL-4, IL-13, TNFα, or lipopolysaccharide enhanced MMP-7 expression in human colonic epithelial cells, rat colonic smooth muscle cells, and THP-1-derived macrophages. Active MMP-7 degraded tight junction protein Claudin-7 in epithelial cells, cleaved recombinant Claudin-7 in cell-free system, and increased Caco-2 monolayer permeability. Immunostaining of colon biopsies revealed up-regulation of MMP-7 and reduction of Claudin-7 in UC patients. Compared to wild-type mice, Mmp7 -/- mice had significantly less inflammation in the colon upon DSS insult. DSS-induced alterations in junction proteins were mitigated in Mmp7 -/- mice, suggesting that MMP-7 disrupts the intestinal barrier. MMP-7 antibody significantly ameliorated colonic inflammation and Claudin-7 reduction in 2 different rodent models of colitis. Summary: MMP-7 impairs intestinal epithelial barrier by cleavage of Claudin-7, and thus aggravating inflammation. These studies uncovered Claudin-7 as a novel substrate of MMP-7 in the intestinal epithelium and reinforced MMP-7 as a potential therapeutic target for IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Ratas , Animales , Proteínas de Uniones Estrechas/metabolismo , Sulfato de Dextran/toxicidad , Metaloproteinasa 7 de la Matriz/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-13/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Lipopolisacáridos/efectos adversos , Interleucina-4/metabolismo , Colitis/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis Ulcerosa/patología , Inflamación/metabolismo , Ratones Noqueados , Citocinas/metabolismo , Claudinas/genética , Claudinas/metabolismo , Trinitrobencenos/metabolismo , Trinitrobencenos/uso terapéutico , Ácidos Sulfónicos/efectos adversos , Ácidos Sulfónicos/metabolismo
6.
Front Mol Biosci ; 9: 759689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274002

RESUMEN

Background and Aims: While the interplay between heart and gut in inflammatory bowel disease (IBD) has previously been noted, how the inflamed gut impairs heart function remain elusive. We hypothesized that exosomal miRNAs of gut origin induce cardiac remodeling in IBD. Our aim was to identify plasma exosomal miRNAs that not only are of diagnostic value but also contribute to cardiac remodeling in patients with ulcerative colitis (UC). Methods: Plasma exosomes were isolated from UC patients and healthy control subjects and exosomal miRNAs were profiled by next-generation sequencing. Exosomal miR-29b levels in CCD841 CoN colon epithelial cells were detected by RT-qPCR. Exosomes packaged with miR-29b were incubated with H9c2 cells or administered to live mice. Results: The plasma exosomal miRNA profiles of the UC patients were significantly different from that of the controls and 20 miRNAs including miR-29b were differentially expressed. In CCD841 CoN cells, TNFα, IL-1ß, and H2O2 significantly elevated miR-29b in both the cells and their secreted exosomes (p < 0.01), suggesting that intestinal epithelium secrets exosomes rich in miR-29b in IBD. In H9c2 myoblast cells, miR-29b modulated multiple genes including brain-derived neurotrophic factor (BDNF). Epithelial cell-derived exosomes packaged with miR-29b also attenuated BDNF and increased cleaved caspase 3, suggestive of apoptosis. Furthermore, tail vein injection of engineered exosomes with high levels of miR-29b suppressed BDNF and augmented cleaved caspase 3 in the heart of adult mouse (p < 0.01). Conclusion: Plasma exosomal miRNA profile could be a novel diagnostic approach for IBD. Excessive plasma exosomal miR-29b suppresses critical proteins like BDNF in IBD, leading to cardiac impairment.

8.
PLoS One ; 16(9): e0257280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543287

RESUMEN

Ulcerative colitis and Crohn's disease are classified as chronic inflammatory bowel diseases (IBD) with known extraintestinal manifestations. The interplay between heart and gut in IBD has previously been noted, but the mechanisms remain elusive. Our objective was to identify microRNAs mediating molecular remodeling and resulting cardiac impairment in a rat model of colitis. To induce chronic colitis, dextran sodium sulfate (DSS) was given to adult rats for 5 days followed by 9 days with normal drinking water for 4 cycles over 8 weeks. Echocardiography was performed to evaluate heart function. DSS-induced colitis led to a significant decrease in ejection fraction, increased left ventricular mass and size, and elevated B-type natriuretic protein. MicroRNA profiling showed a total of 56 miRNAs significantly increased in the heart by colitis, 8 of which are predicted to target brain-derived neurotrophic factor (BDNF). RT-qPCR validated the increases of miR-1b, Let-7d, and miR-155. Transient transfection revealed that miR-155 significantly suppresses BDNF in H9c2 cells. Importantly, DSS colitis markedly decreased BDNF in both myocardium and serum. Levels of various proteins critical to cardiac homeostasis were also altered. Functional studies showed that BDNF increases cell viability and mitigates H2O2-induced oxidative damage in H9c2 cells, demonstrating its protective role in the adult heart. Mechanistically, cellular experiments identified IL-1ß as the inflammatory mediator upregulating cardiac miR-155; this effect was confirmed in adult rats. Furthermore, IL-1ß neutralizing antibody ameliorated the DSS-induced increase in miR-155 and concurrent decrease in BDNF in the adult heart, showing therapeutic potential. Our findings indicate that chronic colitis impairs heart function through an IL-1ß→miR-155→BDNF signaling axis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Colitis/metabolismo , MicroARNs/biosíntesis , Miocardio/metabolismo , Regulación hacia Arriba , Animales , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ecocardiografía , Peróxido de Hidrógeno , Interleucina-1beta/metabolismo , Masculino , MicroARNs/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
9.
J Crohns Colitis ; 15(8): 1362-1375, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33506258

RESUMEN

BACKGROUND AND AIMS: Little is known about the presence and function of tissue-resident mesenchymal stem cells [MtSCs] within the gastrointestinal mucosa in health and inflammatory bowel disease [IBD]. The contribution of MtSCs to the generation of inflammatory fibroblasts during IBD is also poorly understood. We hypothesized that IBD-MtSCs are impaired and contribute to the generation of the pathological myofibroblasts in IBD. METHODS: In a cohort of clinically and endoscopically active IBD patients and normal controls, we used quantitative RT-PCR and stem cell differentiation assays, as well as confocal microscopy, to characterize MtSCs. RESULTS: Expression of two stem cell markers, Oct4 and ALDH1A, was increased in the inflamed IBD colonic mucosa and correlated with an increase of the mesenchymal lineage marker Grem1 in ulcerative colitis [UC], but not Crohn's disease [CD]. Increased proliferation and aberrant differentiation of Oct4+Grem1+ MtSC-like cells was observed in UC, but not in CD colonic mucosa. In contrast to normal and UC-derived MtSCs, CD-MtSCs lose their clonogenic and most of their differentiation capacities. Our data also suggest that severe damage to these cells in CD may account for the pathological PD-L1low phenotype of CD myofibroblasts. In contrast, aberrant differentiation of MtSCs appears to be involved in the appearance of pathological partially differentiated PD-L1high myofibroblasts within the inflammed colonic mucosa in UC. CONCLUSION: Our data show, for the first time, that the progenitor functions of MtSCs are differentially impaired in CD vs UC, providing a scientific rationale for the use of allogeneic MSC therapy in IBD, and particularly in CD.


Asunto(s)
Colitis Ulcerosa/patología , Enfermedad de Crohn/patología , Células Madre Mesenquimatosas/patología , Adolescente , Adulto , Familia de Aldehído Deshidrogenasa 1/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Estudios de Cohortes , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/patología , Masculino , Microscopía Confocal , Miofibroblastos/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retinal-Deshidrogenasa/metabolismo , Adulto Joven
10.
Front Oncol ; 10: 552, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411595

RESUMEN

Desmoplasia, a hallmark of a head and neck cancer, has both biologic and physiologic effects on cancer progression and chemotherapeutic response. Mesenchymal stem/stromal cells (MSCs), also known as mesenchymal stromal progenitor cells, have been shown to play a role in cancer progression, alter apoptotic responses, and confer resistance to chemotherapy in various carcinomas. The pathophysiology of MSCs with respect to tumorigenesis is widely reported in other cancers and is sparsely reported in oral squamous cell carcinomas (OSCCs). We previously reported paracrine mediated PDGF-AA/PDGFR-α signaling to underlie MSCs chemotaxis in OSCC. Given the poor clinical response to primary chemotherapy, we hypothesized that MSCs may alter cancer cell sensitivity to cisplatin through activation of PDGFR-α mediated signaling pathways. Co-culture of MSCs with human derived OSCC cell lines, JHU-012 and -019, resulted in a significant increase in the production of PDGF-AA and MCP-1 compared to cancer cells grown alone (p < 0.005) and was accompanied by an increase in the phosphorylation state of PDGFR-α (p < 0.02) and downstream target AKT at S473 (p < 0.025) and T308 (p < 0.02). JHU-012 and -019 cancer cells grown in co-culture were significantly less apoptotic (p < 0.001), expressed significantly higher levels of Bcl-2 (p < 0.04) with a concomitant significant decrease in bid expression (p < 0.001) compared to cancer cells grown alone. There was a significant increase in the cisplatin dose response curve in cancer cell clones derived from JHU-012 and 019 cancer cells grown in co-culture with MSCs compared to clones derived from cancer cells grown alone (p < 0.001). Moreover clones derived from JHU-012 cells grown in co-culture with MSCs were significantly more susceptible to cisplatin following pretreatment with, crenolanib, a PDGFR inhibitor, compared to cancer cells grown alone or in co-culture with MSCs (p < 0.0001). These findings suggest that crosstalk between cancer cells and MSCs is mediated, at least in part, by activation of autocrine PDGF-AA/PDGFR-α loop driving AKT-mediated signaling pathways, resulting in reduced cancer cell sensitivity to cisplatin through alterations in apoptosis.

11.
J Immunol ; 204(4): 980-989, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31889022

RESUMEN

Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a "double-hit" neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdh1 (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.


Asunto(s)
Cadherinas/genética , Colon/inmunología , Epigénesis Genética/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , MicroARNs/metabolismo , Acetilación , Adulto , Animales , Cadherinas/inmunología , Cadherinas/metabolismo , Línea Celular , Colon/citología , Colon/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/inmunología , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/patología , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Recién Nacido , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Uniones Intercelulares/patología , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Masculino , MicroARNs/antagonistas & inhibidores , Permeabilidad/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Ratas
13.
Adv Exp Med Biol ; 1060: 115-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155625

RESUMEN

This chapter summarizes evidence that intestinal myofibroblasts, also called intestinal stromal cells, are derived in the adult from tissue mesenchymal stem cells under homeostasis and may be replenished by bone marrow mesenchymal stromal (stem) cells that are recruited after severe intestinal injury. A comparison of mechanism of immunosuppression or tolerance by adult intestinal stromal cells (myofibroblasts) is almost identical with those reported for mesenchymal stem cells of bone marrow origin. The list of suppression mechanisms includes PD-L1 and PD-L2/PD-1 immune checkpoint pathways, soluble mediator secretion, toll-like receptor-mediated tolerance, and augmentation of Treg cells. Further, both mesenchymal stem cells and intestinal stromal cells express an almost identical repertoire of CD molecules. Lastly, others have reported that isolate intestinal stromal cells are capable of differentiating into bone and less well into chondrocyte, but not into adipocytes, a finding that we have confirmed. These findings suggest that intestinal stromal cells (myofibroblasts) are partially differentiated adult, tissue-resident stem cells which are capable of exerting immune tolerance in the intestine. Their role in repair of inflammatory bowel disease and immune suppression in colorectal cancer needs further investigation.


Asunto(s)
Tolerancia Inmunológica , Intestinos/citología , Animales , Humanos , Células del Estroma/citología , Células del Estroma/inmunología , Células del Estroma/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-29928672

RESUMEN

BACKGROUND & AIMS: Early life adversity is considered a risk factor for the development of gastrointestinal diseases, including inflammatory bowel disease. We hypothesized that early life colonic inflammation causes susceptibility to aggravated overexpression of interleukin (IL)1ß. METHODS: We developed a 2-hit rat model in which neonatal inflammation (NI) and adult inflammation (AI) were induced by trinitrobenzene sulfonic acid. RESULTS: Aggravated immune responses were observed in NI + AI rats, including a sustained up-regulation of IL1ß and other cytokines. In parallel with exacerbated loss of inhibitor of kappa B alpha expression, NI + AI rats showed hyperacetylation of histone H4K12 and increased V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A binding on the IL1B promoter, accompanied by high levels of norepinephrine/epinephrine. Propranolol, a ß-blocker, markedly ameliorated the inflammatory response and IL1ß overexpression by mitigating against epigenetic modifications. Adrenalectomy abrogated NI-induced disease susceptibility whereas yohimbine sensitized the epithelium for exacerbated immune response. The macrophages of NI rats produced more IL1ß than controls after exposure to lipopolysaccharide (LPS), suggesting hypersensitization; incubation with LPS plus Foradil (Sigma, St. Louis, MO), a ß2-agonist, induced a greater IL1ß expression than LPS alone. Epinephrine and Foradil also exacerbated LPS-induced IL1ß activation in human THP-1-derived macrophages, by increasing acetylated H4K12, and these increases were abrogated by propranolol. CONCLUSIONS: NI sensitizes the colon epithelium for exacerbated IL1ß activation by increasing stress hormones that induce histone hyperacetylation, allowing greater access of nuclear factor-κB to the IL1B promoter and rendering the host susceptible to aggravated immune responses. Our findings suggest that ß blockers have a therapeutic potential for inflammatory bowel disease susceptibility and establish a novel paradigm whereby NI induces epigenetic susceptibility to inflammatory bowel disease.

15.
Front Immunol ; 9: 1125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910803

RESUMEN

Background and Aims: The role of programmed cell death protein 1 (PD-1) and its ligands in the dysregulation of T helper immune responses observed in the inflammatory bowel disease (IBD) is unclear. Recently, a novel concept emerged that CD90+ colonic (myo)fibroblasts (CMFs), also known as stromal cells, act as immunosuppressors, and are among the key regulators of acute and chronic inflammation. The objective of this study was to determine if the level of the PD-1 ligands is changed in the IBD inflamed colonic mucosa and to test the hypothesis that changes in IBD-CMF-mediated PD-1 ligand-linked immunosuppression is a mechanism promoting the dysregulation of Th1 cell responses. Methods: Tissues and cells derived from Crohn's disease (CD), ulcerative colitis (UC), and healthy individuals (N) were studied in situ, ex vivo, and in culture. Results: A significant increase in programmed death-ligand 1 (PD-L1) was observed in the inflamed UC colonic mucosa when compared to the non-inflamed matched tissue samples, CD, and healthy controls. UC-CMFs were among the major populations in the colonic mucosa contributing to the enhanced PD-L1 expression. In contrast, PD-L1 expression was decreased in CD-CMFs. When compared to CD-CMFs and N-CMFs, UC-CMFs demonstrated stronger suppression of IL-2, Th1 transcriptional factor Tbet, and IFN-γ expression by CD3/CD28-activated CD4+ T cells, and this process was PD-L1 dependent. Similar observations were made when differentiated Th1 cells were cocultured with UC-CMFs. In contrast, CD-CMFs showed reduced capacity to suppress Th1 cell activity and addition of recombinant PD-L1 Fc to CD-CMF:T cell cocultures partially restored the suppression of the Th1 type responses. Conclusion: We present evidence showing that increased PD-L1 expression suppresses Th1 cell activity in UC. In contrast, loss of PD-L1 expression observed in CD contributes to the persistence of the Th1 inflammatory milieu in CD. Our data suggest that dysregulation of the Th1 responses in the inflamed colonic mucosa of IBD patients is promoted by the alterations in PD-L1 expression in the mucosal mesenchymal stromal cell compartment.


Asunto(s)
Antígeno B7-H1/genética , Colitis Ulcerosa/etiología , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/etiología , Enfermedad de Crohn/metabolismo , Células del Estroma/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Antígenos Thy-1/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Animales , Biomarcadores , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Colitis Ulcerosa/patología , Colitis Ulcerosa/terapia , Enfermedad de Crohn/patología , Enfermedad de Crohn/terapia , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Activación de Linfocitos , Masculino , Ratones , Microscopía Confocal , Persona de Mediana Edad , Miofibroblastos/metabolismo , ARN Mensajero/genética , Adulto Joven
16.
Cell Microbiol ; 20(11): e12871, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29920917

RESUMEN

Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Lacticaseibacillus rhamnosus , Factor 88 de Diferenciación Mieloide/metabolismo , Probióticos/farmacología , Administración Oral , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Ácido Araquidónico/metabolismo , Células CACO-2 , Colon/citología , Colon/microbiología , Homeostasis , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Miofibroblastos/metabolismo , Miofibroblastos/microbiología , Probióticos/administración & dosificación
18.
J Transl Med ; 14(1): 337, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931212

RESUMEN

BACKGROUND: The robust desmoplasia associated with head and neck squamous cell carcinoma (HNSCC) suggests that the tumor microenvironment may be an important component in the pathophysiology of this cancer. Moreover, the high recurrence rate and poor clinical response to chemotherapy and radiation treatment further underscores that the non-cancerous cells of the microenvironment, such as mesenchymal stromal cells (MSCs), cancer associated fibroblasts (CAFs), and pericytes, may be important in the pathophysiology of HNSCC. METHODS: Confocal microscopy and immunohistomchemistry approaches were used to identify MSCs tumor microenvironment from patients with oral cavity and oral pharyngeal squamous cell carcinoma (SCC). In vitro Boyden chamber assays and multiplex magnetic bead assays were used to measure MSC chemotaxis and to identify the chemokines secreted by JHU-011, -012, -019, three cells lines derived from patients with oral pharyngeal SCC. RESULTS: We show here that MSCs reside in the tumor microenvironment of patients with oral cavity and oral pharyngeal SCC and are recruited via paracrine mediated tumor cell secretion of (platelet derived growth factor) PDGF-AA. The MSC markers CD90+, CD105+, and gremlin-1+ were found to co-localize on cells within the tumor microenvironment in oral cavity SCC specimens distinct from α-smooth muscle actin staining CAFs. The conditioned media from JHU-011, -012, and -019 caused a significant increase in MSC migration (>60%) and invasion (>50%; p < 0.0001) compared to oral keratinocyte (OKT) controls. Tumor cell induced MSC chemotaxis appears to be mediated through paracrine secretion of PDGF-AA as inhibition of the PDGF-AA receptor, PDGFR-α but not PDGFR-ß, resulted in near arrest of MSC chemotaxis (p < 0.0001). CONCLUSIONS: Tumor microenvironment expression of PDGFR-α has been shown to correlate with a worse prognosis in patients with prostate, breast, ovarian, non-small cell lung cancer and osteosarcoma. This is the first evidence that a similar signaling paradigm may be present in HNSCC. PDGFR-α inhibitors have not been studied as adjunctive treatment options in the management of HNSCC and may prove to be an important driver of the malignant phenotype in this setting.


Asunto(s)
Carcinoma de Células Escamosas/patología , Quimiotaxis/efectos de los fármacos , Neoplasias de Cabeza y Cuello/patología , Células Madre Mesenquimatosas/patología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Microambiente Tumoral/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Quimiocinas/metabolismo , Medios de Cultivo Condicionados/farmacología , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Boca/efectos de los fármacos , Boca/patología , Orofaringe/efectos de los fármacos , Orofaringe/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Células del Estroma/metabolismo
19.
J Vis Exp ; (107): e53691, 2016 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-26863470

RESUMEN

Fibroblasts/myofibroblasts (MFs) have been gaining increasing attention for their role in pathogenesis and their contributions to both wound healing and promotion of the tumor microenvironment. While there are currently many techniques for the isolation of MFs from gastrointestinal (GI) tissues, this protocol introduces a novel element of isolation of these stromal cells from frozen tissue. Freezing GI tissue specimens not only allows the researcher to acquire samples from worldwide collaborators, biobanks, and commercial vendors, it also permits the delayed processing of fresh samples. The described protocol will consistently yield characteristic spindle-shaped cells with the MF phenotype that express the markers CD90, α-SMA and vimentin. As these cells are derived from patient samples, the use of primary cells also confers the benefit of closely mimicking MFs from disease states-namely cancer and inflammatory bowel diseases. This technique has been validated in gastric, small bowel, and colonic MF primary culture generation. Primary MF cultures can be used in a vast array of experiments over a number of passage and their purity assessed by both immunocytochemistry and flow cytometry analysis.


Asunto(s)
Fibroblastos/citología , Citometría de Flujo/métodos , Miofibroblastos/citología , Antígenos Thy-1/biosíntesis , Actinas/análisis , Actinas/biosíntesis , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula/métodos , Colon/citología , Fibroblastos/metabolismo , Congelación , Humanos , Inmunohistoquímica , Intestino Delgado/citología , Miofibroblastos/metabolismo , Fenotipo , Células del Estroma/citología , Células del Estroma/metabolismo , Antígenos Thy-1/análisis , Vimentina/análisis , Vimentina/biosíntesis
20.
Int J Cancer ; 138(8): 1971-81, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26595254

RESUMEN

IL-6 is a pleiotropic cytokine increased in CRC and known to directly promote tumor growth. Colonic myofibroblasts/fibroblasts (CMFs or stromal cells) are CD90(+) innate immune cells representing up to 30% of normal colonic mucosal lamina propria cells. They are expanded in CRC tumor stroma, where they also known as a cancer associated fibroblasts (CAFs). Cells of mesenchymal origin, such as normal myofibroblasts/fibroblasts, are known to secrete IL-6; however, their contribution to the increase in IL-6 in CRC and to tumor-promoting inflammation is not well defined. Using in situ, ex vivo and coculture analyses we have demonstrated that the number of IL-6 producing CMFs is increased in CRC (C-CMFs) and they represent the major source of IL-6 in T2-T3 CRC tumors. Activity/expression of stem cell markers-aldehyde dehydrogenase and LGR5- was significantly up-regulated in colon cancer cells (SW480, Caco-2 or HT29) cultured in the presence of conditioned medium from tumor isolated C-CMFs in an IL-6 dependent manner. C-CMF and its derived condition medium, but not normal CMF isolated from syngeneic normal colons, induced differentiation of tumor promoting inflammatory T helper 17 cells (Th17) cell responses in an IL-6 dependent manner. Our study suggests that CD90(+) fibroblasts/myofibroblasts may be the major source of IL-6 in T2-T3 CRC tumors, which supports the stemness of tumor cells and induces an immune adaptive inflammatory response (a.k.a. Th17) favoring tumor growth. Taken together our data supports the notion that IL-6 producing CAFs (a.k.a. C-CMFs) may provide a useful target for treating or preventing CRCs.


Asunto(s)
Neoplasias Colorrectales/patología , Fibroblastos/inmunología , Interleucina-6/biosíntesis , Células Madre Neoplásicas/patología , Western Blotting , Técnicas de Cocultivo , Neoplasias Colorrectales/inmunología , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Inflamación/patología , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Células del Estroma/inmunología , Células del Estroma/metabolismo , Linfocitos T/inmunología , Antígenos Thy-1/inmunología , Antígenos Thy-1/metabolismo , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...